91 research outputs found

    Herbicide impacts on exotic grasses and a population of the critically endangered herb "Calystegia affinis" (Convolvulaceae) on Lord Howe Island

    Get PDF
    Introduced perennial grasses are capable of altering the habitat of native species, causing reductions in population size and vigour, and potentially affecting life-history processes such as survival, pollination and seedling recruitment. We examined the utility of herbicide treatment on two exotic grasses, Pennisetum clandestinum (Kikuyu) and Stenotaphrum secundatum (Buffalo grass) to restore the habitat of Calystegia affinis, a critically endangered species endemic to Lord Howe and Norfolk Islands. Using two herbicides, Asset (designed to affect only grasses) and Glyphosate (a general herbicide), we compared effectiveness in reducing grass cover on a population of Calystegia affinis. We protected Calystegia plants from the herbicides by ensuring their leaves were covered by plastic bags during herbicide application. Both herbicides were similarly effective in reducing grass cover after four weeks and had no noticeable adverse affect on Calystegia (suggesting the plastic bag protection was effective). After 26 weeks, Glyphosate was more effective in maintaining a reduced grass cover. Plots treated with either herbicide had a greater relative increase in abundance of Calystegia stems compared to untreated controls. The Glyphosate treatment resulted in the greatest relative increase in stem abundance, but this was not significantly greater than in the Asset treatment. We consider that spraying with Glyphosate treatment, with follow-up monitoring and spot-spraying, will assist the recovery of the Calystegia affinis population. Ultimately, the maintenance of a weed-free zone at the forest edge will provide suitable habitat for additional recruitment of this and other native species

    Disruption of recruitment in two endemic palms on Lord Howe Island by invasive rats

    Get PDF
    Invasive species may have negative impacts on many narrow range endemics and species restricted to oceanic islands. Predicting recent impacts of invasive species on long-lived trees is difficult because the presence of adult plants may mask population changes. We examined the impact of introduced black rats (Rattus rattus) on two palm species restricted to cloud forests and endemic to Lord Howe Island, a small oceanic island in the southern Pacific. We combined estimates of the standing size distribution of these palms with the proximal impacts of rats on fruit survival in areas baited to control rats and in unbaited areas. The size distribution of palms with trunks was comparable across baited and unbaited sites. Small juvenile palms lacking a trunk (\50 cm tall) were abundant in baited areas, but rare in unbaited sites for Lepidorrhachis mooreana, and rare or absent in 3 out of 4 unbaited Hedyscepe canterburyana sites. All ripe fruits were lost to rats in the small fruited L. mooreana. Fruitremoval was widespread but less (20–54%) in H. canterburyana. Both palms showed evidence of a reduced capacity to maintain a juvenile bank of palms through regular recruitment as a consequence of over 90 years of rat impact. This will limit the ability of these species to take advantage of episodic canopy gaps. Baiting for rat control reduced fruit losses and resulted in the re-establishment of a juvenile palm bank. Conservation of both endemic palms necessitates control (or eradication) of rat populations on the unique cloud forest summits of the island

    Population Ecology of Waratahs, Telopea speciosissima (Proteaceae): Implications for Management of Fire-prone Habitats

    Get PDF
    Waratah (Telopea speciosissima) post-fire floral displays are a prominent feature of the landscape in Royal National Park and elsewhere in southeastern Australia, but factors governing the persistence of the species are poorly known. We examined long term patterns of fecundity, recruitment and survival of waratahs in Royal NP in relation to two major wildfires. Flowering occurred mainly over 3 years following both the 1994 and 2001 fi res, but fewer plants flowered, fewer seeds were produced and fewer seedlings established after the 2001 fi re. After the 1994 fire, limited seed dispersal resulted in most seedlings establishing near fruiting individuals. Only 14% of the plants that established as seedlings after the 1994 fire survived the 2001 fire. At the time of the 2001 fi re, these plants were 4-6 years old and post-fire survival was highest in older plants. A logistic model predicts that it would take 5.9 (95% CI 5.4-7.5) years of growth after germination for plants to have greater than 25% survival probability if burnt (equivalent to a fire return period of about 9 years). Waratahs are long lived, have long primary juvenile periods and occasional opportunities for recruitment. Each fire may not lead to successful recruitment. While recruitment failure after one or more fires may not be significant, understanding the proximate factors that limit recruitment is important to predict the impact of long term changes such as altered fire regimes under a changing climate

    Assessing the conservation status of the grass Elymus multiflorus subsp. kingianus on Lord Howe Island, NSW

    No full text
    The grass Elymus multiflorus subsp. kingianus (family Poaceae) is considered to be endemic to Lord Howe and Norfolk Islands. We assessed the conservation status of the taxon on Lord Howe Island, New South Wales, and undertook targeted field surveys across three years and several seasons in suitable habitat, based on the single previously recorded location. We found the species occurrence on Lord Howe Island was highly restricted, with only a few plants found at 2 locations in close proximity. A number of exotic grasses pose a threat to the long-term conservation of the taxon, which was assessed as being eligible for listing as critically endangered under the NSW Threatened Species Conservation Act 1995

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
    corecore